Standalone Hybrid Wind & Solar Generation

May1727

Team

<u>Members:</u> Matt Lee Nathaniel Byrne Michael Trischan Brian Gronseth Eric Cole Jeffrey Szostak <u>Faculty:</u> Dr. Ajjarapu

PhD Graduate Students: Ankit Singhal (PhD Candidate)

Pranav Sharma (PhD Candidate)

Project Plan- Project Statement

• Formal Project Statement:

"To Create a combined Solar and Wind Electrical generation system that hybridizes the most supporting hardware as possible."

- Deliverables
 - Design a hybrid wind and solar system
 - Add components to existing PV array
 - Wind Turbine, Inverter, Solar Panels
 - Create labs for EE 452 centered around the hybrid system so future ISU students can use the hybrid system as a learning tool.

Project Plan- Conceptual Sketch

Project Plan- Requirements

• Functional Requirements

- Working Simulink diagrams for both the wind turbine and PV array.
- Solar panels will utilize maximum power point tracking control, as well as a boost converter.
- The wind turbine will produce AC power that is rectified and then sent to a Buck/Boost converter.
- Both systems meet to charge the battery and from the battery go through the inverter to power the load.

• Nonfunctional Requirements

- Analysis of solar and wind generation system components
- Analysis of solar and wind emplacement for max power generation
 - Measure of wind speed and irradiance
- Create labs for EE 452 centered around the hybrid system so future ISU students can use it as a learning tool.

Project Plan- Constraints/Risks/Considerations

- Lack of experience
 - Power Systems
 - Simulink
- Non-engineering aspects
 - Wind turbine placement regulation
 - Budget
- Risks
 - Lab safety
 - Wind Turbine setup

Project Plan- Market and Costs

- Market Survey
 - The customers for this project are future EE 452 students, as well as the EE power department.
 - An important component of this project is the relationship with WESO, who is willing to allow academic use of their wind turbine for certain periods of the semester.
 - Saves money
 - Non-black box model
- Resource/Cost Estimate
 - Solar Panels

1000W/m^2 & 25C	Pmp[W]	Vmp[V]	Imp[A]	Voc[V]	Isc[A]	Cells/Module	Dimensions[mm]	Weight[kg]	Price
KD135GX-LPU	135	17.7	7.63	22.1	8.37	36(4x8)	1500/668	12.9	Current Model
KD140GX-LFBS	140	17.7	7.91	22.1	8.68	36(4x8)	1500/668	12.9	\$240
KU320-72PA	320	36.8	8.7	45.5	9.22	72(6x12)	1956/992	27.5	\$260 (min purchase of 4)

Project Plan- Milestones and Schedule

- Researched wind and solar systems
 - Boost converters, MPPT, inverters, turbine prices
- Obtained wind turbine from WESO
 - Planned with Coover administration about
 - turbine placement
- Wind and solar teams design respective systems in Simulink
 - Parameters are modeled after the existing PV hardware and potential wind hardware.
 - Simulink models functioning individually.

	August	September	October	November	December
Whole Team	J				
	Pick t	eammates			
	Assig	gn Project			
				Combine	Simulink models
Wind Team	-				-
		Research V	Wind Energy		
		Crea	te Simulink n	nodel	
		Resea	arch Wind Tu	rbines	
				Insta	all Hardware
Solar Team	2			-	-
		Research S	Solar Energy		
		Crea	te Simulink n	nodel	

Wind System Flowchart

Wind Generator

Generator Output

AC-DC-AC

+

AC-DC-AC Output

Solar System Flowchart

Solar System

Solar System

P&O Algorithm

% Param input: Dinit = Param(1); %Initial value for D output Dmax = Param(2); %Maximum value for D Dmin = Param(3); %Minimum value for D deltaD = Param(4); %Increment value used to increase/decrease the duty cycle D % (increasing D = decreasing Vref) %

persistent Vold Pold Dold;

dataType = 'double'; if isempty(Vold) Vold=0; Pold=0; Dold=Dinit: end P= V*I: dV= V - Vold; dP= P - Pold; if dP ~= 0 & Enabled ~=0 if dP < 0if dV < 0D = Dold - deltaD;else D = Dold + deltaD; end else if dV < 0D = Dold + deltaD; else D = Dold - deltaD; end end else D=Dold; end if D >= Dmax | D<= Dmin D=Dold; end Dold=D; Vold=V: - Pold=P;

Solar System

Buck

Solar System

Battery

Red Battery

. 4	5 🕞 🕪 🔳	- 2- · 2	- 🐼 - 🗳	- 🖉					
2				Ĩ	Battery Voltag	e		 	Ī
_									
·									
,									
; -									
	1	2		1	F	c	7		
					Time				

Solar System

Inverter/Load

Hardware Technology Platform

Solar Panels

Batteries

MPPT

Load

Inverter

Instruments

User Adjustable Load

Voltage, Current, and Power Meters

Safety Switch

Data Recorder

Monitor

Functional Prototype planned to be implemented next semester.

Conclusion-Status

Current Project Status

Software:

• Section-by-section functionality Simulink models for the Wind and Solar systems.

Hardware

- Obtained permission from WESO to use their Wind Turbine.
- The turbine is fully functioning and generates either 3-phase AC voltage or DC voltage. It's equipped with several sensors which can be used in lab.

Conclusion- Contributions

Individual Contributions:

<u>Eric Cole - Webmaster</u> - Developed Team Website and Wind Simulink Model <u>Jeffrey Szostak - Wind Tech Lead</u> - Procured WESO Wind Turbine Usage <u>Michael Trischan - Key Concept Holder</u> - Researched Potential Wind Turbines <u>Nathaniel Byrne - Group Leader</u> - Solar Fundamentals and Solar Panel Research <u>Matt Lee - Communications Leader</u> - Communications, Weekly Reports, Solar Simulink Model <u>Brian Gronseth - Solar Tech Lead</u> - Solar System design, hardware setup

Conclusion- Plan

Next Semester Plan:

- Combine solar and wind simulink diagrams with batteries
- Combine hardware systems
 - Purchase additional Solar Panels
 - Make necessary edits to WESO wind turbine
- Create lab documents for EE 452

Conclusion-Questions

Questions?

Contact info: Email: <u>may1727@iastate.edu</u> Website: <u>http://may1727.sd.ece.iastate.edu</u>

Appendix

ALEKO 350 W VAWT

Rated Power	350 W
Start up speed	1.5 m/s
Rated speed	11 m/s
Max speed	45 m/s
Diameter	1.12 m
Cost	\$495.00
Shipping	Free; 1-3 weeks

http://www.alekoproducts.com/ALEKO-350W-24V-Vertical-Wind-Power-Generator-p/wgvq3 50w24v-ap.htm

Shineman 600 W VAWT

Max Power	650 W
Rated Power	600 W
Start up speed	3 m/s
Max speed	40 m/s
Diameter	1.2 m
Height of tower	6 m
Cost	\$480.00
Shipping	Free; 5-7 weeks

http://www.ebay.com/itm/1m-length-600W-Win d-turbine-Vertical-axis-blade-high-quality-for-sa le-5pcs-lot/262679596613?_trksid=p2047675.c 100005.m1851&_trkparms=aid%3D222007%2 6algo%3DSIC.MBE%26ao%3D1%26asc%3D3 9497%26meid%3De8946d39f4aa4d07808671 ea391cf64c%26pid%3D100005%26rk%3D2% 26rkt%3D6%26sd%3D252581684544

Typical power curve for turbines we researched

Wind Turbine

Wind Turbine and Generator

Generator Output

Three phase Rectifier

Rectifier Output

5	10 -	15	20	-15	10 5 - -5 -	15
		-	m			
			~~~~~			
			www			
			www			
			mm			
			~~~~~			
			~~~~~			
			www			
			www			
			www.			
			~~~~			
			www			
			www			
			www			
			www			
			www			
			www			
			www			
			www			
			www			
			www			
			ww			
			~~~~			
			~~~~			
			www			
			~~~~~			
			www	Outpu		Input
			ww	t Volta		Volta
			~~~~	age		ge
			www			
			~~~~			
			www			
			www			
			~~~~			
			www			
			www			
			www			
			~~~~~			
			www			
			~~~~~			
			~~~~~			
			~~~~			
			www			
			mm			
			mm			
			www			
			www			
			~~~~~			
			www			
			www			
			www			
			www			
			~~~~			
			~~~~~			
			m			

#### **Boost Converter**

Duty Cycle = 1-(Vin/Vout)



#### **Boost Converter Output**



#### Inverter



# Inverter and Transformer Output











#### AC-DC-AC Output





#### **Forecasted Prototype**

Functional Prototype planned to be implemented next semester.

Along with aforementioned Design, Prototype will have:

- Meters for measuring current and voltage values, similar to simulations.
- Monitor and Controller for analysing data during operation.
- User Interface limited to adjusting load via light bulb switches, as seen on previous slide.

